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Abstract This paper is devoted to the establishment at the formal level of a scaling leading
from gas-particles (also called Eulerian-Lagrangian) models for monodisperse thick sprays
towards multiphase flows models (also called Eulerian-Eulerian) including the volume frac-
tion as an unknown. This passage to the limit involves the study of an inelastic collision
operator acting on internal energies as well as velocities.
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1 Introduction

Sprays are flows involving a continuous gaseous phase and a disperse phase (typically con-
stituted of liquid droplets) whose volume fraction is not too big. We consider in this paper
only monodisperse sprays (that is, all the droplets in the disperse phase have the same ra-
dius r). Moreover, we shall also suppose that all droplets are incompressible and that no
evaporation occurs, so that r will be in the sequel an absolute constant.

We denote by α := α(t, x) ∈ [0,1] the volume fraction of gas at time t ∈ R+ and point
x ∈ � (� being a subset of R

3). Considering this quantity makes sense when the volume
4
3 π r3 of a typical droplet is much smaller than a small (but macroscopic) elementary volume
of fluid. We say that the spray is thick (it was first introduced in [16] and then used in the
KIVA code [2, 3, 32, 33]) when 1 − α(t, x) is not negligible in at least part of R+ × �

(typically 1 − α(t, x) � 10−3) but not too big either (typically, 1 − α(t, x) ≤ 0.2 at worst).
We refer to [16, 32] for the concept of thick spays.
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Thick sprays are modeled by a coupling of a kinetic equation and a fluid equation. This
coupling is done through the volume fraction α and the drag between the two phases. We
write below the set of equations described in [16], with a few differences that we explain in
the sequel.

We denote by ρg := ρg(t, x) ∈ R+, p := p(t, x) ∈ R+, ug := ug(t, x) ∈ R
3, eg :=

eg(t, x) ∈ R+, Eg := Eg(t, x) = eg(t, x) + 1
2 |ug(t, x)|2 ∈ R+ and Tg := Tg(t, x) ∈ R+ the

respective density (of mass), pressure, velocity, internal energy (per unit of mass), total (in-
ternal + kinetic) energy (per unit of mass), and temperature of the gas. Those quantities
satisfy the following balance laws:

∂t (αρg) + ∇x · (αρgug) = 0, (1)

∂t (αρgug) + ∇x · (αρgug ⊗ ug) + ∇xp = −A, (2)

∂t (αρgEg) + ∇x ·
(

αρg

(
Eg + p

ρg

)
ug

)
+ p∂tα = −B1 − B2, (3)

where A is the momentum transferred to the (elementary volume at time t and point x of)
gas by the dispersed phase and B1, B2 constitute the corresponding (resp. mechanical and
thermal) transfer.

The density in the phase space f := f (t, x,up, ep) ≥ 0 of droplets which at time t and
point x have velocity up ∈ R

3 and internal energy ep ∈ R+ satisfies the following Vlasov-
Boltzmann equation:

∂tf + up · ∇xf + ∇up · (f �) + ∂ep (f φ) = Q(f,f ), (4)

where � and φ represent the transfer of momentum and energy of the gaseous phase on a
given droplet (which at time t and point x has velocity up ∈ R

3 and internal energy ep ∈ R+).
Accordingly,

mp� = −mp

ρp

∇xp − D (up − ug); mpφ = 	(Tg − Tp), (5)

A =
∫∫

up,ep

mp� f dupdep, (6)

B1 =
∫∫

up,ep

mp

(
� + ∇xp

ρp

)
· up f dupdep, (7)

B2 =
∫∫

up,ep

mpφ f dupdep, (8)

where mp is the mass of one droplet, ρp is the density of the liquid constituting the droplets
(mp = 4

3 π r3 ρp , and mp , ρp , r are absolute constants), and Tp is the temperature of the
droplet. In (5), the term D (up − ug) models the drag. The drag coefficient D is in general
a function of ρg , |ug − up| (and also r , ρp and the molecular viscosity of the gas [this last
quantity being neglected in the equation of momentum of the gas]).

Also in (5), the term 	(Tg −Tp) models the thermal exchanges between the droplets and
the gas. The coefficient 	 in general depends upon the thermal viscosity of the particle and
the Nusselt number (and therefore upon r , |ug − up|, etc.).
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The system is closed thanks to the constitutive equations of the gas and the liquid:

p(t, x) = P1(ρg(t, x), eg(t, x)), Tg(t, x) = T1(ρg(t, x), eg(t, x)), (9)

Tp = T2(ep), (10)

and the identity for the volume fraction of droplets:

1 − α(t, x) = 4

3
πr3

∫∫
up,ep

f (t, x,up, ep) dupdep. (11)

The set of equations (1)–(11) is sometimes called “Gas-particles” or “Eulerian-Lagrangian”.
The main differences with the model proposed by Dukowicz [16] is that we take into account
collisions (they were neglected in the original model) and equations for the energy [6].

Note that the presence of a non-infinitesimal volume fraction 1 − α of droplets is not
compatible with the presence of a non-infinite Boltzmann kernel (this is a consequence of
the Boltzmann-Grad asymptotics: cf. [12]). The situation in the classical work of Dukow-
icz [16] is even worse since no collision kernel is considered there. The scaling that we
propose in next section partially removes this incompatibility, since the collision kernel
tends to infinity. The formulas for Q that we propose are original and thoroughly described
in Sect. 2.1.

We provide in this work a link between (1)–(11) and a different class of systems, some-
times called “Eulerian-Eulerian”, which models two-phase flows (including thick sprays).
Those systems are thoroughly described in [24]. They are obtained at a heuristic level by
taking averages of Euler-type equations for both phases, and by imposing reasonable clo-
sures.

In the “Eulerian-Eulerian” approach, the phase space density f of droplets is replaced
by macroscopic quantities, namely: the density (of mass) ρ := ρ(t, x) ∈ R+ of liquid, its
velocity v := v(t, x) ∈ R

3, its internal energy (per unit of mass) e := e(t, x) ∈ R+, its total
(internal + kinetic) energy (per unit of mass) E := E(t, x) = e(t, x) + 1

2 |v(t, x)|2 ∈ R+ and
its temperature T := T (t, x) ∈ R+. The equations write

∂t (αρg) + ∇x · (αρgug) = 0, (12)

∂t (αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã, (13)

∂t (αρgEg) + ∇x ·
(

αρg

(
Eg + p

ρg

)
ug

)
+ p∂tα = −B̃1 − B̃2, (14)

∂t ((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0, (15)

∂t ((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp = Ã, (16)

∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(
E + p

ρ

)
v

)
+ p∂t (1 − α) = B̃1 + B̃2. (17)
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Those balance laws are completed by the constitutive equations of the gas (similar to (9))

p(t, x) = P1(ρg(t, x), eg(t, x)); Tg(t, x) = T1(ρg(t, x), eg(t, x)), (18)

together with the constitutive equations of the liquid (incompressible) phase

T (t, x) = T2(e(t, x)), ρ(t, x) = ρp. (19)

Finally, the transfer terms Ã, B̃1, B̃2 of momentum and energy write

Ã = −(1 − α)
ρ

mp

D̃ (v − ug), B̃1 = −(1 − α)
ρ

mp

D̃ (v − ug) · v, (20)

B̃2 = −(1 − α)
ρ

mp

	̃ (T − Tg). (21)

The terms Ã, B̃1, B̃2 respectively represent the drag force term, its deposit in terms of en-
ergy, and the thermal exchanges. The constants D̃, 	̃ respectively represent the drag force
coefficient and the thermal conduction coefficient. They can be fitted using experimental
data and in general depend upon α, |v − ug|, etc. Note that systems like (12)–(19) appear
not only in the theory of sprays, but also in many other kinds of multiphase flows (stratified,
churning flows, etc.), the transfer terms (like Ã, etc.) depend in general of the type of flows
which are considered and are generally obtained by using statistical averages [3, 24, 32, 33].

Our goal in this paper is to provide a clear scaling which enables to derive “rigorously at
the formal level” macroscopic equations such as (12)–(21) from “gas-particles” equations
such as (1)–(11). It is clear that (15)–(17) will be obtained by taking moments (with respect
to v, e) of (4). This strategy has already been used in many works concerning the modeling
of sprays [15, 27, 28], in the more complicated case when the spray is polydisperse: it uses
however heuristic closures in order to derive the “Eulerian-Eulerian” equations.

Our approach, though it is restricted to the simpler case of monodisperse sprays, is quite
different since:

(i) It is based on a scaling of the sprays equation obtained after a non-dimensionalization
of those equations;

(ii) It provides non heuristical closures (that is, a mathematical link between A,B1,B2 and
Ã, B̃1, B̃2);

(iii) It involves the description of a new variant of the Boltzmann kernel where all the para-
meters are assessed.

In the scaling that we propose, the collision term Q appearing in (4) must be domi-
nant. This exactly corresponds in the context of standard kinetic theory to the limit of small
Knudsen number, in which 1

ε
is put in front of the collision kernel, and which leads from

the Boltzmann equation of rarefied gases towards the compressible Euler equations of fluid
dynamics (cf. [26] for a rigorous proof in the context of very smooth solutions on a small
time interval, and [21] for a general survey on the question).

Our paper is structured as follows: in Sect. 2, the gas-particles equations are specified in
detail, including the collision kernel Q. Then, a non-dimensional version of those equations
is provided in Sect. 3. The distributions which cancel Q are described in Sect. 4. Then,
equations for the macroscopic quantities (for both phases) are written down and the system
is closed (in Sect. 5). Some conclusions and perspectives are presented at the end of the
paper (Sect. 6).
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2 Presentation of the Inelastic Collision Kernel

2.1 General Form of the Collision Kernel

We recall here the main assumptions that we presented in the introduction of this work about
the flow we consider.

We assume that the flow is constituted of a surrounding gas and of a dispersed liquid
phase. This phase is itself assumed to be of relatively small volume fraction (typically be-
tween 10−3 and 0.2), and to be constituted of very tiny spherical incompressible droplets
having all the same radius r (that is, the spray is monodisperse). The flow inside the droplets
is not modeled.

As stated in the introduction, a system which models the spray under this assumption
can be written down by considering the unknown f := f (t, x,up, ep) ≥ 0 for the droplets
and ρg := ρg(t, x) ∈ R+, ug := ug(t, x) ∈ R

3, p := p(t, x) ∈ R+, Eg := Eg(t, x) ∈ R+ for
the gas. The set of equations is then (1)–(11), and it remains to precisely define the collision
operator Q.

The assumptions that underly the establishment of this operator are the following: First,
since the spray is monodisperse, no complex phenomena of coalescence or breakup of
droplets are considered. For the same reason, all collisions are supposed to be binary (that
is, two droplets are present at the beginning of the collision and produce two droplets at the
end of the collision).

Then, since droplets are macroscopic objects, the cross section will be that of hard
spheres. For the same reason, kinetic energy conservation during the process of collision
is not expected in general. As a consequence, one needs to write down a model in which
part of the kinetic energy is lost: models of granular media (cf. [5, 10, 37]) provide a good
solution for that.

Moreover, since the internal energy of the droplets is one of the variables in f , one needs
a rule to exchange internal energy during the process of collision: models for polyatomic
gases (cf. [8, 13]) provide a simple solution for this physical phenomenon.

Finally, the kinetic energy which is lost has to be converted in internal energy, and to be
distributed between the two outgoing droplets. Since those droplets have the same volume,
we choose to divide it equally. Collecting all those ideas, we end up with a collision kernel
which writes

Q(f,f )(t, x,up, ep)

=
∫∫ ∫∫

σ∈S2,up∗∈R3

ep∗∈R+

(
1

1− a

1

β2
f (t, x,′up∗,

′ep∗) f (t, x,′up,′ep)

− f (t, x,up∗, ep∗) f (t, x,up, ep)

)
1{′ep,′e∗

p≥0} r2 |up − up∗|dσdup∗ dep∗, (22)

where the pre-collisional velocities ′up∗ and ′up are defined as

′up = up + up∗
2

− 1 − β

4β

(
up − up∗

) + 1 + β

4β
|up − up∗|σ,

′up∗ = up + up∗
2

+ 1 − β

4β

(
up − up∗

) − 1 + β

4β
|up − up∗|σ.
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Here, σ belongs to the unit sphere S
2, and

∫
σ∈S2 dσ = 4π . The pre-collisional internal ener-

gies ′ep∗ and ′ep are defined as

′ep = 2 − a

2 − 2a
ep − a

2 − 2a
ep∗ − 1

2

E,

′ep∗ = − a

2 − 2a
ep + 2 − a

2 − 2a
ep∗ − 1

2

E,

where


E = 1

2
(′up

2 + ′up∗
2 − up∗

2 − up
2)

=
(

1 − β2

8β2

)
|up − up∗|2 − 1 − β2

8β
|up − up∗|

(
up − up∗

) · σ (23)

is the loss of kinetic energy (or gain of internal energy) [divided by mass].
In those formulas, β := β(|up − up∗|) is a measure of the inelasticity of the collision

(the collision is elastic when β = 1), and a := a(|up − up∗|) is the parameter which mea-
sures what part of the internal energy is exchanged during a collision (no internal energy is
exchanged when a = 0).

Note that the prefactor 1
1−a

1
β2 is related to the Jacobian of the pre-collisional transform

(up, ep,up∗, ep∗) 
→ (′up,′ep, ′up∗,
′ep∗), and to the cross section of hard spheres [38]. The

model presented here is strongly reminiscent of models appearing in granular gases. The
only difference is the treatment of the internal energy of the droplets.

2.2 Weak Form of the Collision Kernel and Conservations

The following weak form of the collision kernel can be obtained (at the formal level) (see
[5, 10, 37]): For all test function � := �(up, ep),

∫∫
up,ep

Q(f,f )�(up, ep) dupdep

=
∫∫ ∫∫

up,ep,up∗,ep∗,σ

ff∗
[
� ′ − �

]
r2 |up − u∗

p|dupdepdup∗dep∗

= 1

2

∫∫ ∫∫
up,ep,up∗,ep∗,σ

ff∗
[
� ′

∗ + � ′ − �∗ − �
]

r2 |up − u∗
p|dupdepdup∗dep∗, (24)

with the following formulas for the post-collisional velocities and internal energies:

u′
p = up + up∗

2
+ 1 − β

4

(
up − up∗

) − 1 + β

4
|up − up∗|σ,

up
′
∗ = up + up∗

2
− 1 − β

4

(
up − up∗

) + 1 + β

4
|up − up∗|σ,

e′
p = 2 − a

2
ep + a

2
ep∗ + 1

2

E, ep

′
∗ = a

2
ep + 2 − a

2
ep∗ + 1

2

E,
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E = 1

2
(u′

p

2 + u′
p∗

2 − up∗
2 − up

2)

= 1 − β2

8
|up − up∗|2 − 1 − β2

8
|up − up∗|

(
up − up∗

) · σ

(remember that � ′∗ := �(t, x,up
′
∗, ep

′
∗), etc.). Specializing the weak formulation to the

functions �(up, ep) = mp , �(up, ep) = mpup and �(up, ep) = 1
2mpu2

p + mpep , we get
the conservations of mass, momentum and total energy :

∫∫
up,ep

Q(f,f )(up, ep)mp dupdep = 0, (25)

∫∫
up,ep

Q(f,f )(up, ep)mp up dupdep = 0, (26)

∫∫
up,ep

Q(f,f )(up, ep)

[
1

2
mpu2

p + mpep

]
dupdep = 0. (27)

2.3 Formulas for the Inelasticity and Energy Exchange Parameters

It remains to give a formula for the parameters a and β which appear in our model of
collisions. This is done in this subsection, under the assumption that viscosity is the main
reason why kinetic energy is lost during collisions. A more complete description of the
procedure together with numerical values in a typical experiment (in the context of the
nuclear industry) can be found in [29].

2.3.1 Probability Laws of Exchange of Internal Energy

We first explain the process of transfer of internal energy during the collisions. We obtain a
hint of the expression of a.

A collision of droplets can be considered as a coalescence of two particles which split
after some time. The droplets remain stuck together for a while, and they exchange internal
energy through thermal conduction.

The time 
τcoll of collision between two droplets p (with velocity up , internal energy ep

and temperature Tp) and p∗ (with velocity up∗ , internal energy ep∗ and temperature Tp∗ ) is
generally assessed as 
τcoll = 2r

|up−up∗ | (see [11, 23]).
Because of heat transfers, an amount 4πrλp(Tp − Tp∗) of internal energy is exchanged

by unit of time (with λp the thermal conductivity of the droplets, supposed to be constant)
from p towards p∗. The 4π factor might not be the good geometric factor because one
particle does not surround the other during the collision as the gas surrounds a particle, but
this quantity gives at least the right order of magnitude. Hence, we get

d

dt
(ep∗ − ep) = 4πrλp

mp

(Tp − Tp∗).

Supposing that the specific heat Cp of the liquid is a constant, we end up with the following
evolution for the difference of internal energy between the two droplets during the collision:

(
ep∗ − ep

)
(t) = exp

(
−4πrλp

Cpmp

t

)
× (

ep∗ − ep

)
(0).
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Using the last equality for t = 
τcoll , one gets

a = 1 − exp

(
−4πrλp

Cpmp

2r

|up − up∗ |
)

. (28)

2.3.2 Estimate of the Inelasticity Parameter

We assess the effect of inelasticity through some computations using the T.A.B. (Taylor
Analogy Break-up) model used in the Kiva code (see [4] and [2]), under the assumption
that viscosity is the main factor of loss of kinetic energy during collisions between liquid
droplets ([25] and [39]).

More precisely, the distortion of sphericity y satisfies the following ordinary differential
equation (see [4]),

ÿ = 2

3

ρg

ρp

|up − ug|2
r2

− 8σT

ρpr3
y − 10μp

ρpr2
ẏ,

where σT is the surface tension of the liquid constituting the droplets, and μp is the dynamic
viscosity of this same liquid. Assuming that the surface tension plays a negligible role (w.r.t.
the viscosity) in the loss of kinetic energy during a collision, we find a characteristic time τc

(viscous time):

τc = 1

/
10μp

ρpr2
.

Since the oscillatory energy is proportional to ẏ2, we see that the kinetic energy (in the
center of mass) of the two droplets E(t) (at a time t after the beginning of a collision) is
controlled through the following exponential evolution:

E(t) = E(0) exp

(
−2t

τc

)
= 1

4
|up − up∗|2 exp

(
−2t

τc

)
,

so that the loss of kinetic energy 
E during a collision is


E = 1

4
|up − up∗|2

(
1 − exp

(
−2
τcoll

τc

))
.

Since we also have defined 
E through


E = 1

2
(u′

p

2 + u′
p∗

2 − up∗
2 − up

2)

= 1 − β2

8
|up − up∗|2 − 1 − β2

8
|up − up∗|

(
up − up∗

) · σ,

the loss is (at worst)


E = 1 − β2

4
|up − up∗|2.

We end up with

β = exp

(
−
τcoll

τc

)
= exp

(
− 20μp

ρpr|up − up∗ |
)

. (29)
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This procedure of course only provides a rough order of magnitude for β . This is neverthe-
less enough to determine if the regime of collision is elastic or not.

The equations for thick sprays being now complete, we introduce in next section a scaling
based on the dimensional analysis of those equations.

3 Non-Dimensional Form of the Vlasov-Boltzmann Equation

We write down in this short section the dimensional analysis which enables to obtain a
formal limit for the Vlasov-Boltzmann equation (4). In order to do so, we first introduce the
following time/space typical quantities:

• tg : typical time of the experiment,
• L: typical length of the experiment.

Next, we introduce quantities related to the gas and the droplets (remember that r , mp , ρp

are the radius, mass and density of droplets, and that D, 	 are the coefficients for drag force
and thermal exchanges)

• N : typical number of droplets of the experiment.
• V : typical mean velocity of the droplets. We shall assume that it is also the typical thermal

velocity of the droplets [that is, the square root of the variance of the velocity distribution],
and the typical velocity of the gas. One has V tg = L.

• Ip : typical internal energy of the droplets per mass unit.
• Ig : typical internal energy of the gas per mass unit.
• TT : typical temperature of the droplets. We shall assume that it is also the typical temper-

ature of the gas.
• P : Typical pressure of the gas.
• P ′ = ρp V 2: this quantity has the dimension of a pressure.

It is customary to introduce at this level the mean free path σ = L3

r2 N
. Finally, we denote by

ε the Knudsen number ε = σ
L
. This quantity is at the basis of the passage from Boltzmann

equation towards Euler equation (see [11] and [9]).
The orders of magnitude of the terms appearing in (4) are then given by the following

formulas:

• Time derivative term:

∂tf ∼ N

Ip V 3 L3

1

tg
. (30)

• Transport term:

∇x · (f up) ∼ N

Ip V 3 L3

V

L
∼ ∂tf. (31)

• Pressure term:

∇up ·
(∇xp

ρp

f

)
∼ N

Ip V 3 L3

V

L

P

P ′ ∼ P

P ′ ∂tf. (32)
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• Drag force term:

∇up ·
(

D

mp

(up − ug)f

)
∼ N

Ip V 3 L3

D

r3 ρp

∼
(

D tg

r3 ρp

)
∂tf . (33)

• Energy exchange term:

∂ep

(
	

mp

(Tg − Tp)f

)
∼ N

Ip V 3 L3

	TT

r3 ρpIp

∼ 	TT tg

r3 ρpIp

∂tf. (34)

• Collisional term:

Q(f,f ) ∼ r2V Ip V 3

(
N

Ip V 3 L3

)2

(we recall that we use the hard sphere cross section)

∼ 1

ε
∂tf. (35)

We now introduce non-dimensional quantities (denoted with a tilde) for the unknowns and
parameters entering (4). That is, we consider

t̃ = t

tg
, x̃ = x

L
, ũp = up

V
, ẽp = ep

Ip

, T̃p = Tp

TT

,

f̃ (t̃ , x̃, ũp, ẽp) = IpL3V 3

N
f (tg t̃ , L x̃ , V ũp , Ip ẽp),

for the particles and

ũg(t̃ , x̃) = ug(tg t̃ , L x̃)

V
, T̃g(t̃ , x̃) = Tg(tg t̃ , L x̃)

TT

,

ẽg(t̃ , x̃) = eg(tg t̃ , L x̃)

Ig

, P̃ (t̃ , x̃)
p(tg t̃ , L x̃)

P

for the gas.
The equation satisfied by f̃ then becomes

∂t̃ f̃ + ũp · ∇x̃ f̃ + ∇ũp · (f̃ �̃) + ∂ẽp (f̃ φ̃) = 1

ε
Q(f̃ , f̃ ), (36)

where

�̃ = P

P ′ ∇x̃ p̃ + C2

(
ũp − ũg

)
,

φ̃ = C3(T̃g − T̃p),

C2 = D

mp

tg,

C3 = 	TT tg

mpIp

.
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We shall now study the limit of (36) when ε → 0. We see that this limit makes sense when
the typical parameters of the experiment under study are such that

from (30) and (31), 1 � ε, (37a)

from (32),
P ′

P
∼ 1, (37b)

from (33),
mp

D tg
∼ 1, (37c)

from (34),
mpIp

	TT tg
∼ 1. (37d)

A typical situation appearing in the nuclear industry where those assumptions are fulfilled
is described in [29].Note that other scalings, based on a different ordering of the various
terms appearing in (36) can be performed. In the context where collisions are replaced by a
diffusion operator (in the up variable), we wish to point out two such scalings, performed
in [19] and [20]. One of the main differences with our own work is the fact that in those
papers, the drag force is of order ε−1. In our setting, the drag force is of order 1 because in
the application to the nuclear industry that we have in mind (cf. [29]), the spray is produced
by the introduction of “not too small” droplets of liquid tin in a gas (air) at a “not too big”
relative velocity.

4 Limit of the PDF in the Scaling

In order to pass to the limit (at the formal level) in (36) when ε → 0, we study the solutions
of the functional equation Q(f,f ) = 0, when collisions are truly inelastic, that is when
β := β(|up − up∗ |) ∈ [0,1[. The computation of the exchange of kinetic energy leads to

∫∫
up,ep

Q(f,f )
1

2
mpu2

p dupdep

=
∫∫ ∫∫

up,ep,up∗ ,ep∗

1 − β2

8
ff∗4πr2 mp|up − up∗|3 dup∗dep∗dupdep, (38)

so that the effect of inelastic collisions is to concentrate the velocities of the droplets. Note
first that when considering only the evolution of velocities, in absence of internal energy
exchange, the convergence towards a Dirac mass is rigorously proven in [5], [37] or [17]
for solutions of the spatially homogeneous Boltzmann equation ∂tf = Q(f,f ) (for β con-
stant).

We now wish to show, at the formal level, that when considering the evolution of both
velocities and internal energies in ∂tf = Q(f,f ),

lim
t→+∞ f (t, up, ep) = Gδup=v(up) ⊗ δep=e(ep), (39)

with v ∈ R
3,G ≥ 0, e > 0.
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Note that this cannot be done directly by the study of the solutions of Q(f,f ) = 0 since
all densities of the form

f (up, ep) = δup=v(up) ⊗ μ(ep), (40)

where μ is a positive measure, are such solutions (equilibria).
The explanation of what at first glance seems an inconsistency between (39) and (40) is

the following: when μ is not a Dirac mass, the equilibria of the form δup=v(up) ⊗ μ(ep)

are unstable. More precisely, as soon as the density f is not exactly a Dirac mass w.r.t.
the variable up , some collisions occur and consequently some energy will be exchanged
between the droplets, so that μ will converge towards a Dirac mass. Note that other insta-
bilities in the context of granular media have been studied. We refer in particular to [5] for
the instability of the constant states (as far as mass and velocity are concerned; the temper-
ature behaving like t−2) w.r.t. large waves perturbations for solutions of dissipative Euler
systems.

4.1 The Case of Constant Coefficients of Inelasticity and Energy Exchange

We assume in the following computation that a and β are constant, for the sake of simplicity.
An extension of this computation in a case in which a and β are not constant is given in
Sect. 4.2.

In order to do so, we first recall Haff’s law [22]: For f := f (t, up) satisfying the spa-
tially homogeneous equation ∂tf = Q(f,f ) (with β ∈ [0,1[ and no exchange of energy
involved), the following estimate holds:

m

1 + t2
≤ T (t) ≤ M

1 + t2
, (41)

where

T (t) :=
∫

up
f (t, up) 1

3mp(up − v)2dup∫
up

f (t, up)mpdup

,

and where m and M are constants depending on initial data. A rigorous proof of this result
can be found in [30] and [31] (when β is a constant).

A first hint of the proof can be found in [5] when one assumes that |v −v∗| is replaced by
a term proportional to

√
T . Our goal here is to estimate the evolution of the mean internal

energy along the solutions of the equation

∂tf (t, up, ep) = Q(f,f )(t, up, ep). (42)

The computations that we provide are only approximations. They give an idea of what
should be the evolution of the quantity

g(t) :=
∫∫

up,ep
f (t, up, ep)mp(ep − e(t))2 dupdep∫∫

up,ep
f (t, up, ep)mp dupdep

,

that is the variance of f w.r.t. ep . They will be sustained in next subsection by numerical
simulations. Note first that thanks to the conservation of mass,
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g′(t) =
∫∫

Q(f,f )(t, up, ep)mp(ep − e(t))2dupdep∫∫
f (t, up, ep)mp dupdep

=
(

−a

(
1 − a

2

)∫∫∫∫
1

2
ff ∗4πr2(ep − ep∗)|up − up∗|dupdup∗depdep∗

+ 1

2

∫∫∫∫
4πr2ff ∗

[
1

2

E2 + 
E (ep + ep∗ − 2e)

]

× |up − up∗|dupdup∗depdep∗

)/∫∫
f dupdep . (43)

We use the following approximation based on Haff’s law: in all computations we replace
|up −up∗| by

√
6T (the 6 comes from the fact that we are in 3D): it is more or less the same

approach as in [5]. Then,

g′(t) ∼
(

−a

(
1 − a

2

)√
6T

∫∫∫∫
1

2
ff ∗4πr2(ep − ep∗)

2dupdup∗depdep∗

+
∫∫∫∫

2πr2ff ∗
(

1

2

(
1 − β2

4
6T

)2

+ 1 − β2

4
6T (ep + ep∗ − 2e)

)

× √
6T dupdup∗depdep∗

)/∫∫
up,ep

f dupdep. (44)

We use the identities
∫∫∫∫

ff ∗(ep − ep∗)
2dupdup∗depdep∗

=
∫∫∫∫

ff ∗ [
(ep − e)2 + (e − ep∗)

2
]
dupdup∗depdep∗

= 2g(t)

(∫∫
up,ep

f dupdep

)2

, (45)

and ∫∫∫∫
ff ∗(ep + ep∗ − 2e) dupdup∗depdep∗ = 0. (46)

As a consequence, we obtain the following (approximate) ODE for the evolution of g:

g′(t) ∼ (1 − α)

(
−a

(
1 − a

2

)√
6

3

r
T (t)1/2g(t) + 1

4

(
1 − β2

4

)2 3

r
(6T (t))5/2

)
, (47)

where

1 − α =
∫∫

up,ep

f
4

3
πr3dupdep

is the volume occupied by the droplets (in the homogeneous setting that we consider, this
quantity is a constant). Using now (according to Haff’s law) the approximation T (t) =
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c2
1

(1+c2t)2 where c1 and c2 > 0, we solve (47) and obtain (except in the exceptional case when
3
r
(1 − α)

c1
c2

√
6a(1 − a/2) = 4):

g(t) ∼ g(0)

(1 + c2t)
3
r (1−α)

c1
c2

√
6a(1−a/2)

+ 1

4

(
1 − β2

4

)2
(
√

6c1)
5/c2

3
r
(1 − α)

c1
c2

√
6a(1 − a/2) − 4

×
[
(1 + c2t)

−4 − (1 + c2t)
− 3

r (1−α)
c1
c2

√
6a(1−a/2)

]
. (48)

We now discuss the behavior of g according to the sign of 3
r
(1 − α)

c1
c2

√
6a(1 − a/2) − 4.

• When 4 < 3
r
(1 − α)

c1
c2

√
6a(1 − a/2): we get

g(t) ∼ Cst

(1 + c2t)4
. (49)

This is the situation when thermal exchanges are predominant:
√

g(t) then converges
to zero as rapidly as the temperature T (t) (note that

√
g has the same dimension as an

energy).
• When 4 > 3

r
(1 − α)

c1
c2

√
6a(1 − a/2), we get

g(t)∼ Cst

(1 + c2t)
3
r (1−α)

c1
c2

√
6a(1−a/2)

,

so that
√

g(t) still converges towards 0, but this convergence is slower than that of the
temperature T (t). It can even be very slow when a is close to 0 (that is, when the ex-
changes of internal energy are of small amplitude).

Note finally that the exceptional case 3
r
(1 −α)

c1
c2

√
6a(1 −a/2) = 4 leads to a formula close

to (49) [but with a logarithmic correction].
The previous computations show (though not rigorously) that the only stable equilibrium

of ∂tf = Q(f,f ) in the case of inelastic collisions (β ∈ [0,1[) are functions defined by
(39).

We now present a numerical simulation which confirms the approximate computations
presented above. We present some numerical tests for the spatially homogeneous Boltzmann
equation ∂tf = Q(f,f ), when Q is the inelastic collision kernel defined by (22), with a and
β fixed constants. The computations are performed thanks to a particle method (cf. [4, 34]),
where the density f := f (t, up, ep) is approximated by a sum of Dirac masses with the
same numerical weight (that is, f (t, up, ep) ∼ w

∑N

i=1 δup=upi ;ep=epi
). This set of numerical

particles then evolves according to Bird’s method (cf. [7]). The tests which are presented
correspond to the following parameters:

r = 10−4, f (0, up, ep) = Cst 1up∈[−104,104]3;ep∈[5.105,5.106].

About 104 numerical particles are used.
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Fig. 1 Behavior of kinetic temperature: lnT as a function of ln t for different β

First Test: Convergence Towards the Dirac Mass w.r.t. Velocity; Haff’s Law We check that
Haff’s law holds for a = 1 and β = 0.99,0.95,0.8: we plot the results in logarithm scale:
we expect to get a (asymptotically) straight line whose slope is −2 (since Haff’s law means
that T (t) ∼ t−2).

It is indeed what we observe in Fig. 1. Note also that, as expected, the convergence is
slower when β increases.

Second Test: Convergence Towards the Dirac Mass w.r.t. the Internal Energy We now
check the convergence towards the Dirac mass w.r.t. internal energy. We fix β = 0.99 and
let a vary between 0.01 and 1.0. We plot

W = ln

(∫∫
f (t, up, ep)|ep − e(t)|depdup/

∫∫
f (t, up, ep)depdup

)

as a function of ln(t).
As can be seen in Fig. 2, the more a increases, the more the coefficients of the asymptotic

straight line tend to −2. More precisely (in accordance with the theoretical computation), we
see that there exists a critical a (around 0.06) which separates a zone in which the behavior
of W seems to be in t−2, and a zone in which it is rather in t−θ , with θ ∈]0,2[ depending on
a. Finally, we observe that for small a, the function W increases during a certain amount of
time: thermal exchanges are then not significant enough to completely counterbalance the
positive term in (47) (that is, the transfer of kinetic energy to internal energy) at all times.

4.2 The Case when the Coefficients of Inelasticity and Internal Energy Exchange Depend
on Relative Velocity

We (briefly) present here a formal computation showing that the results of Sect. 4.1 obtained
when a and β are constant still hold when a and β are given by (28) and (29). The com-
putation performed in Sect. 4.1 for the evolution of temperature (with the approximation
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Fig. 2 Convergence in internal energy: ln
(∫∫

f (t, up, ep)|ep − e(t)|depdup/
∫∫

f (t, up, ep)depdup

)
as

a function of ln t for various values of parameters

|up − up∗ | ∼
√

6T ) leads to the following ODE, when β is given by formula (29):

d

dt
T ∼ −C

r

(
1 − exp

(
−2


τcoll

τc

))
(1 − α)T

3
2

∼ −C

r

(
1 − exp

(
− 4r√

6T τc

))
(1 − α)T

3
2 , (50)

for some C > 0. When T is large, d
dt

T ∼ − 4C
τc

(1 − α)T so that T decays exponentially.

When T becomes small enough, T satisfies d
dt

T ∼ −C
r
(1 − α)T

3
2 and we are back to the

situation that we studied in Sect. 4.1 with β constant (and close to 0). Similar computations
can be done for the quantity g. We now present a numerical simulation which sustains those
computations.

We use the expression of a and β found in Sects. 2.3.1 and 2.3.2. The numerical code
is similar to the code used previously. As one can see in Fig. 3, the temperature T (t) does
converge to zero. At the beginning, this convergence is exponential, whereas as soon as T

becomes small enough, the rate of convergence corresponds to Haff’s law, i.e. is in 1
t2 . Next

we observe the convergence of the internal energy in Fig. 4. We see that the internal energy
indeed converges to a Dirac mass in this simulation.

5 Fluid of Particles

According to the dimensional analysis of Sect. 3, we end up with the following set of scaled
equations for the spray:

∂t (α
ερε

g) + ∇x · (αερε
gu

ε
g) = 0 , (51)
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Fig. 3 Convergence towards the Dirac mass in velocity: lnT as a function of ln t

Fig. 4 Convergence towards the Dirac mass in internal energy: ln(
∫∫

f (t, up, ep)|ep − e(t)|depdup/∫∫
f (t, up, ep)depdup) as a function of ln t

∂t (α
ερε

gu
ε
g) + ∇x · (αερε

gu
ε
g ⊗ uε

g) + ∇xp
ε = −Aε, (52)

∂t (αρε
gE

ε
g) + ∇x ·

(
αερε

g

(
Eε

g + pε

ρε
g

)
uε

g

)
+ pε∂tα

ε = −Bε
1 − Bε

2 , (53)
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∂tf
ε + uε

p · ∇xf
ε + ∇up · (f ε�ε) + ∂ep (f εφε) = 1

ε
Q(f ε, f ε), (54)

where

mp�ε = −mp

ρp

∇xp
ε − D(up − uε

g); mpφε = 	(T ε
g − Tp), (55)

Aε =
∫∫

up,ep

mp�ε f ε dupdep, (56)

Bε
1 =

∫∫
up,ep

mp

(
�ε + ∇xp

ε

ρp

)
· up f ε dupdep, (57)

Bε
2 =

∫∫
up,ep

mpφε f ε dupdep. (58)

In this section, we present the computations which enable to pass to the limit at the formal
level in (51)–(58), when ε → 0. These formal computations are based on the same principle
as the traditional passage from the Boltzmann eq. towards fluid mechanics: we first take
moments of (54), and then close the corresponding equations thanks to the study (in Sect. 4)
of the solutions of Q(f,f ) = 0 (more precisely, of the large time behavior of the solutions
of the spatially homogeneous equation ∂tf = Q(f,f )).

We define the following quantities associated with the moments of order zero (mass),
one (momentum), two (energy, pressure (Reynolds’) tensor) and three (flux of energy) of
the fluid of particles (the notations used here are coherent with those of Sect. 1):

(1 − α)ρ =
∫∫

up,ep

f mp dupdep, (1 − α)ρv =
∫∫

up,ep

f mpup dupdep,

(1 − α)ρ ec =
∫∫

up,ep

1

2
f mp|up|2 dupdep, (1 − α)ρ e =

∫∫
up,ep

f mpep dupdep,

(1 − α)ρ E =
∫∫

up,ep

f

{
1

2
mp|up|2 + mpep

}
dupdep,

(1 − α)P ′ =
∫∫

up,ep

f mp(v − up) ⊗ (v − up)dupdep,

(1 − α)q =
∫∫

up,ep

f mp(v − up)2(up − v)dupdep.

Note that the pressure tensor P ′ will appear in our set of equations because the fluid of
droplets does not “see” the same pressure as the gas. This extra term of pressure, sometimes
called interfacial pressure, appears (usually in a non tensorial form) in many works con-
cerned with the modeling of two-phase flows (see [36] and [18] for example). This pressure
tensor vanishes when all the droplets have the same velocity (in the limit ε → 0).

We now integrate the Boltzmann equation against mpdupdep (mass conservation),
mpupdupdep (momentum conservation), and mp[ 1

2 |up|2 + ep]dupdep (energy conserva-
tion). We use properties (25), (26) and (27) of the collision kernel. This leads to

∂t ((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0

(remember that ρ = ρp is a constant),
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∂t ((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp + ∇x · ((1 − α)P ′)

= −
∫∫

up,ep

D (up − ug)f dupdep,

and

∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(
E + p

ρ

)
v

)
+ p∂t (1 − α)

+ ∇x · ((1 − α)(P ′v + q))

= −
∫∫

up,ep

D (up − ug) · upf dupdep +
∫∫

up,ep

	(Tg − Tp)f dupdep. (59)

We now close the equations by formally letting ε go to 0 in (51)–(58). According to the
results of Sect. 4, we know (at the formal level) that f ε → f , with

f (t, x,up, ep) = G(t, x) δup=v(t,x)(up) δep=e(t,x)(ep). (60)

We end up with a system of 6 equations which write (remember that eg = Eg − 1
2 u2

g and
e = E − 1

2 v2):

∂t (αρg) + ∇x · (αρgug) = 0, (61)

∂t ((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0, (62)

∂t (αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = −Ã, (63)

∂t ((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp = Ã, (64)

∂t (αρgEg) + ∇x ·
(

αρg

(
Eg + p

ρg

)
ug

)
+ p∂tα = −B̃1 − B̃2, (65)

∂t ((1 − α)ρE) + ∇x ·
(

(1 − α)ρ

(
E + p

ρ

)
v

)
+ p∂t (1 − α) = B̃1 + B̃2, (66)

where Ã, B̃1 and B̃2 are defined in the introduction, the functions D̃ and 	̃ being the same
as D, 	, but taken at points v, e instead of up, ep . We recall the equations of state which
complete this system:

p = P1(ρg, eg), Tg = T1(ρg, eg), (67)

ρ = ρp, T = T2(e). (68)

At the end, we obtain the announced link between the set of Eulerian-Lagrangian equa-
tions and the set of Eulerian-Eulerian equations.
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Remark When collisions are elastic (that is, β = 1), the computation runs thus: first, f ε →
f (formally), with

f (t, x,up, ep) = Z(t, x)

(2πT (t, x))
3
2

exp

(
− (up − v(t, x))2

2T (t, x)

)
δep=e(t,x)(ep), (69)

where Z,v, e, T are macroscopic moments which satisfy the following closed set of seven
equations for seven unknowns, that is

∂t (αρg) + ∇x · (αρgug) = 0, (70)

∂t ((1 − α)ρ) + ∇x · ((1 − α)ρv) = 0, (71)

∂t (αρgug) + ∇x · (αρgug ⊗ ug) + α∇xp = M(ρ,1 − α,v,T ,ug,D), (72)

∂t ((1 − α)ρv) + ∇x · ((1 − α)ρv ⊗ v) + (1 − α)∇xp + ∇x ((1 − α)ρT )

= −M(ρ,1 − α,v,T ,ug,D), (73)

∂t (αρgEg) + ∇x ·
(

αρg

(
Eg + p

ρg

)
ug

)
+ p∂tα

= I(ρ,1 − α,v,T ,ug,D) − 	(Tg − T )
(1 − α)ρ

mp

, (74)

∂t ((1 − α)ρec) + ∇x · ((1 − α)ρ(ec + T )v) + (1 − α)v · ∇xp

= −I(ρ,1 − α,v,T ,ug,D), (75)

∂t ((1 − α)ρe) + ∇x · ((1 − α)ρev) + p (∂t (1 − α) + ∇x · ((1 − α)v))

= 	(Tg − T )
(1 − α)ρ

mp

, (76)

where Eg = eg + 1
2 |ug|2, ec = 3

2 T + 1
2 |v|2, and M, I are “almost” explicit functions. Their

expression can be found in [29]. Remember also that the following equations of state are
added to (70)–(76):

p = P1(ρg, eg), Tg = T1(ρg, eg), Tp = T2(e), ρ = ρp. (77)

Note that this system is not found in textbooks about two-phase flows since usually the
collisions between droplets are considered to be inelastic.

6 Conclusion and Perspectives

We now wish to briefly comment some of the issues related to this paper.
Firstly, we wish to explain what can be the extensions of the asymptotics presented in this

work: the presence of (molecular or turbulent) diffusion in the gas equations does not change
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the computations. It is also possible in principle to take into account chemistry terms (e.g.
combustion terms) in the equations: this leads however to serious complications. Finally,
it is known that polydispersion plays a decisive role in the construction of macroscopic
models starting from spray equations (cf. [14]). In general, it is not possible to guess the
evolution of droplets w.r.t. radius, and one has to cut into “sections” the various possible
radiuses r . It however sometimes happens that processes of coagulation/breakup lead to
such specific profiles (cf. for example [1]). In such (unfortunately unrealistic, at least when
sprays are concerned) situations, two-phase macroscopic equations can be obtained (at the
formal level) by an asymptotics.

Secondly, we would like to emphasize the extreme difficulty of making rigorous the
passage to the limit that we propose (even in a “small time” setting). This is related to the
very bad mathematical behavior of the limiting equations (12)–(19). Those equations are not
written in conservative form and have a domain of non hyperbolicity (cf. [35]). Moreover,
the set of equations (1)–(11) has not yet been studied from the mathematical point of view.
It might indeed present a behavior as bad as the limiting system [though this guess is not
yet sustained by convincing arguments]. One possibility could be to try to pass to the limit
in an analogous system, where the molecular viscosity of the gas is not neglected (then the
limiting equations are better behaved, cf. [35]).
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